Skip to main content

Courses

Graduate Orientation - required

Students who apply through the Computer Science Department should take CSC 600, while students who apply through the Electrical and Computer Engineering Department should take ECE 600

Units: 1

Introduction for new graduate students to [a] information about graduate program, department, and university resources, and [b] research projects conducted by CSC faculty.

Offered in Fall and Spring


Units: 1

Introduction of the Electrical and Computer Engineering Department graduate program. Introduction to computing and library facilities; Review of NC State student code of conduct and ethics. Structure of the ECE department. General information for starting graduate studies. Overview of on-going research projects by faculty members. Must hold graduate standing.

Offered in Fall and Spring

Core Networking Courses - 9 credit hours

Units: 3

General introduction to computer networks. Discussion of protocol principles, local area and wide area networking, OSI stack, TCP/IP and quality of service principles. Detailed discussion of topics in medium access control, error control coding, and flow control mechanisms. Introduction to networking simulation, security, wireless and optical networking.

Offered in Fall Spring Summer


Units: 3

Principles and issues underlying provision of wide area connectivity through interconnection of autonomous networks. Internet architecture and protocols today and likely evolution in future. Case studies of particular protocols to demonstrate how fundamental principles applied in practice. Selected examples of networked clinet/server applications to motivate the functional requirements of internetworking. Project required.

Offered in Fall Spring Summer


Units: 3

Introduction to cellular communications, wireless local area networks, ad-hoc and IP infrastructures. Topics include: cellular networks, mobility mannagement, connection admission control algorithms, mobility models, wireless IP networks, ad-hoc routing, sensor networks, quality of service, and wireless security.

Offered in Spring Only


Units: 3

Topics related to networking services, signaling for setting up networking services, such as SIP and IMS, networking architectures for providing QoS for networking services, such as MPLS, DiffServ and RAC, signaling protocols for setting up QoS connections in the transport stratum, such as LDP and RSVP-TE, video-based communications, and capacity planning models for dimensioning services.

Offered in Fall and Spring


Units: 3

Topics related to design and management of campus enterprise networks, including VLAN design; virtualization and automation methodologies for management; laboratory use of open space source and commercial tools for managing such networks.

Offered in Fall Only

Theory Courses - 3 credit hours

Units: 3

Algorithm design techniques: use of data structures, divide and conquer, dynamic programming, greedy techniques, local and global search. Complexity and analysis of algorithms: asymptotic analysis, worst case and average case, recurrences, lower bounds, NP-completeness. Algorithms for classical problems including sorting, searching and graph problems [connectivity, shortest paths, minimum spanning trees].

Offered in Fall Spring Summer


Units: 3

Basic concepts of graph theory. Trees and forests. Vector spaces associated with a graph. Representation of graphs by binary matrices and list structures. Traversability. Connectivity. Matchings and assignment problems. Planar graphs. Colorability. Directed graphs. Applications of graph theory with emphasis on organizing problems in a form suitable for computer solution.

Offered in Spring Only

YEAR: Offered Alternate Even Years


Units: 3

Workload characterization, collection and analysis of performance data, instrumentation, tuning, analytic models including queuing network models and operational analysis, economic considerations.

Offered in Fall and Spring


Units: 3

Introduction to the design and performance evaluation of network services. Topics include top-down network design based on requirements, end-to-end services and network system architecture, service level agreements, quantitative performance evaluation techniques. Provides quantitative skills on network service traffic and workload modeling, as well as, service applications such as triple play, internet [IPTV], Peer-to-peer [P2P], voice over IP [VoIP], storage, network management, and access services.

Offered in Spring Only


Units: 3

Analytic modeling and topological design of telecommunications networks, including centralized polling networks, packet switched networks, T1 networks, concentrator location problems, routing strategies, teletraffic engineering and network reliability.

Offered in Spring Only


Units: 3

This course deals with the signal processing principles underlying recent advances in communications and networking. Topics include: smart-antenna and multi-input multi-output [MIMO] techniques; multiuser communication techniques [multiple access, power control, multiuser detection, and interference managment]; signal processing in current and emerging network applications such as cognitive radio and social networks. Knowledge of linear alegbra and stochastic analysis is required.

Offered in Fall Only

YEAR: Offered Alternate Even Years

Networking tracks - minimum 18 credits

Networking Design Track

Units: 3

Fundamental issues related to the design of operating systems. Process scheduling and coordination, deadlock, memory management and elements of distributed systems.

Offered in Fall and Spring

Units: 3

General introduction to computer networks. Discussion of protocol principles, local area and wide area networking, OSI stack, TCP/IP and quality of service principles. Detailed discussion of topics in medium access control, error control coding, and flow control mechanisms. Introduction to networking simulation, security, wireless and optical networking.

Offered in Fall Spring Summer

Units: 3

Principles and issues underlying provision of wide area connectivity through interconnection of autonomous networks. Internet architecture and protocols today and likely evolution in future. Case studies of particular protocols to demonstrate how fundamental principles applied in practice. Selected examples of networked clinet/server applications to motivate the functional requirements of internetworking. Project required.

Offered in Fall Spring Summer

Units: 3

Introduction to cellular communications, wireless local area networks, ad-hoc and IP infrastructures. Topics include: cellular networks, mobility mannagement, connection admission control algorithms, mobility models, wireless IP networks, ad-hoc routing, sensor networks, quality of service, and wireless security.

Offered in Spring Only

Units: 3

Topics related to design and management of campus enterprise networks, including VLAN design; virtualization and automation methodologies for management; laboratory use of open space source and commercial tools for managing such networks.

Offered in Fall Only

Units: 3

Principles of network and service continuity and related metrics; the theory of network availability, survivability, and restoration; a comprehensive coverage of network architectures, protocols, algorithms, and related technology for survivability; advanced topics in network survivability; hands-on experience in the implementation of protocols and software for survivable systems and the operation of survivable networks.

Offered in Spring Only

Units: 3

Cutting-edge concepts and technologies to support internetworking in general and to optimize the performance of the TCP/IP protocol suite in particular. Challenges facing and likely evolution for next generation intenetworking technologies. This course investigates topics that include, but may be not limited to: Internet traffic measurement, characteriztion and modeling, traffic engineering, network-aware applications, quality of service, peer-to-peer systems, content-distribution networks, sensor networks, reliable multicast, and congestion control.

Offered in Spring Only

Units: 3

Reviews the current state of research in wireless networks, network architectures, and applications of wireless technologies; students will design, organize, and implement or simulate systems in a full-semester research project. For students with background in networking and communications who wish to explore research and development topics.

Offered in Fall Only

Units: 3

Introduction to the design and performance evaluation of network services. Topics include top-down network design based on requirements, end-to-end services and network system architecture, service level agreements, quantitative performance evaluation techniques. Provides quantitative skills on network service traffic and workload modeling, as well as, service applications such as triple play, internet [IPTV], Peer-to-peer [P2P], voice over IP [VoIP], storage, network management, and access services.

Offered in Spring Only

Units: 3

Analytic modeling and topological design of telecommunications networks, including centralized polling networks, packet switched networks, T1 networks, concentrator location problems, routing strategies, teletraffic engineering and network reliability.

Offered in Spring Only

Network Hardware Track

Units: 3

The need for parallel and massively parallel computers. Taxonomy of parallel computer architecture, and programming models for parallel architectures. Example parallel algorithms. Shared-memory vs. distributed-memory architectures. Correctness and performance issues. Cache coherence and memory consistency. Bus-based and scalable directory-based multiprocessors. Interconnection-network topologies and switch design. Brief overview of advanced topics such as multiprocessor prefetching and speculative parallel execution. Credit is not allowed for more than one course in this set: ECE 406, ECE 506, CSC 406.

Offered in Fall Spring Summer

Units: 3

This course is a first graduate-level course in digital communications. Functions and interdependence of various components of digital communication systems will be discussed. Statistical channel modeling, modulation and demodulation techniques, optimal receiver design, performance analysis methods, source coding, quantization, and fundamentals of information theory will be covered in this course.

Offered in Spring and Summer

Units: 3

Design of digital Application Specific Integrated Circuits [ASICs] based on Hardware Description Languages [Verilog, VHDL] and CAD tools, particularly login synthesis. Emphasis on design practices and underlying algorithms. Introduction to timing-driven design, low-power design, design-for-test and ASIC applications. Project.

Offered in Spring and Summer

Units: 3

Design of general-purpose computers through cost-performance analysis. Emphasis on making design decisions regarding the instruction set architecture and organization of single-processor computer. Discussion of design choices, role of compiler and techniques for analysis, simulation and implementation. Consideration of relationships between architecture, organization and technology

Offered in Fall and Spring

Units: 3

This course investigates photonic devices at the component level and examines the generation, propagation and detection of light in the context of optical communication systems. Topics include planar and cylindrical optical waveguides, LEDs, lasers,optical amplifiers, integrated optical and photodetectors, design tradeoffs for optical systems, passive optical networks, and wavelength division multiplexed systems.

Offered in Spring Only

Units: 3

Digital systems design in CMOS VLSI technology: CMOS devise physics, fabrication, primitive components, design and layout methodology, integrated system architectures, timing, testing future trends of VLSI technology.

Offered in Spring Only

Units: 3

General introduction to computer networks. Discussion of protocol principles, local area and wide area networking, OSI stack, TCP/IP and quality of service principles. Detailed discussion of topics in medium access control, error control coding, and flow control mechanisms. Introduction to networking simulation, security, wireless and optical networking.

Offered in Fall Spring Summer

Units: 3

Principles and issues underlying provision of wide area connectivity through interconnection of autonomous networks. Internet architecture and protocols today and likely evolution in future. Case studies of particular protocols to demonstrate how fundamental principles applied in practice. Selected examples of networked clinet/server applications to motivate the functional requirements of internetworking. Project required.

Offered in Fall Spring Summer

Units: 3

Introduction to cellular communications, wireless local area networks, ad-hoc and IP infrastructures. Topics include: cellular networks, mobility mannagement, connection admission control algorithms, mobility models, wireless IP networks, ad-hoc routing, sensor networks, quality of service, and wireless security.

Offered in Spring Only

Units: 3

Topics related to networking services, signaling for setting up networking services, such as SIP and IMS, networking architectures for providing QoS for networking services, such as MPLS, DiffServ and RAC, signaling protocols for setting up QoS connections in the transport stratum, such as LDP and RSVP-TE, video-based communications, and capacity planning models for dimensioning services.

Offered in Fall and Spring

Units: 3

Theory and analysis of wireless portable communication systems. Provides a fundamental understanding of the unique characteristics of these systems. Topics include: Code Division Multiple Access [CDMA], mobile radio propagation, characterization of a Rayleigh fading multipathchannel, diversity techniques, adaptive equalization, channel coding, and modulation/demodulation techniques. Although contemporary cellular and personal communication services[PCS] standards are covered, the course stresses fundamental theoretical concepts that are not tied to a particular standard.

Offered in Fall Only

Units: 3

This is an introductory course on communication technologies and SCADA [supervisory control and data acquisition] systems for smart electric power applications. The fundamental concepts, principles, and practice of how communication systems operate are introduced and the function of main components reviewed. Application of communication systems for electric power, in particular SCADA architecture and protocols are also introduced. The course includes hands-on experience with typical intelligent electronic devices interconnected by a communication system.

Offered in Fall Only

Units: 3

Advanced topics in parallel computer architecture. Hardware mechanisms for scalable cache coherence, synchronization, and speculation. Scalable systems and interconnection networks. Design or research project required.

Offered in Spring Only

Units: 3

In-depth study of digital circuits at the transistor level. Topics include fundamentals; high speed circuit design; low-power design; RAM; digital transceivers; clock distribution; clock and data recovery; circuits based on emergining devices. Project.

Offered in Fall Only

Units: 3

This course covers the verification process used in validating the functional correctness in today's complex ASICs [application specific integrated circuits]. Topics include the fundamentals of simulation based functional verification, stimulus generation, results checking, coverage, debug, and formal verification. Provides the students with real world verification problems to allow them to apply what they learn.

Offered in Spring Only

Units: 3

Advanced research issues in code optimization for scalar and parallel programs; program analysis, scalar and parallel optimizations as well as various related advanced topics.

Offered in Spring Only

Units: 3

This course deals with the signal processing principles underlying recent advances in communications and networking. Topics include: smart-antenna and multi-input multi-output [MIMO] techniques; multiuser communication techniques [multiple access, power control, multiuser detection, and interference managment]; signal processing in current and emerging network applications such as cognitive radio and social networks. Knowledge of linear alegbra and stochastic analysis is required.

Offered in Fall Only

YEAR: Offered Alternate Even Years

Units: 3

In depth study of topics in computer design; advantages and disadvantages of various designs and design methodologies; technology shifts, trends, and constraints; hardware/software tradeoffs and co-design methodologies.

Offered in Spring Only

Network Software Track

Units: 3

Fundamental issues related to the design of operating systems. Process scheduling and coordination, deadlock, memory management and elements of distributed systems.

Offered in Fall and Spring

Units: 3

An introduction to software life cycle models; size estimation; cost and schedule estimation; project management; risk management; formal technical reviews; analysis, design, coding and testing methods; configuration management and change control; and software reliability estimation. Emphasis on large development projects. An individual project required following good software engineering practices throughout the semester.

Offered in Fall Spring Summer

Units: 3

Exploration of technological issues and challenges underlying electronic commerce. Distributed systems; network infrastructures; security, trust, and payment solutions; transaction and database systems; and presentation issues. Project required. No Audits.

Offered in Spring Only

Units: 3

Introduces students to the discipline of designing, developing, and testing secure and dependable software-based systems. Students will learn about risks and vulnerabilities, and effective software security techniques. Topics include common vulnerabilities, access control, information leakage, logging, usability, risk analysis, testing, design principles, security policies, and privacy. Project required.

Offered in Spring Only

Units: 3

The design of object-oriented systems, using principles such as the GRASP principles, and methodologies such as CRC cards and the Unified Modeling Language [ULM]. Requirements analysis. Design patterns Agile Methods. Static vs. dynamic typing. Metaprogramming. Open-source development practices and tools. Test-first development. Project required, involving contributions to an open-source software project.

Offered in Fall and Spring

Units: 3

This course provides an introduction to concepts and methods for extracting knowledge or other useful forms of information from data. This activity, also known under names including data mining, knowledge discovery, and exploratory data analysis, plays an important role in modern science, engineering, medicine, business, and government. Students will apply supervised and unsupervised automated learning methods to extract patterns, make predictions and identify groups from data. Students will also learn about the overall process of data collection and analysis that provides the setting for knowledge discovery, and concomitant issues of privacy and security. Examples and projects introduce the students to application areas including electronic commerce, information security, biology, and medicine. Students cannot get credit for both CSC 422 and CSC 522.

Offered in Fall and Spring

Units: 3

Complex and specialized data structures relevant to design and development of effective and efficient software. Hardware characteristics of storage media. Primary file organizations. Hashing functions and collision resolution techniques. Low level and bit level structures including signatures, superimposed coding, disjoint coding and Bloom filters. Tree and related structures including AVL trees, B*trees, tries and dynamic hashing techniques.

Offered in Spring Only

Units: 3

Study of cloud computing principles, architectures, and actual implementations. Students will learn how to critically evaluate cloud solutions, how to construct and secure a private cloud computing environment based on open source solutions, and how to federate it with external clouds. Performance, security, cost, usability, and utility of cloud computing solutions will be studied both theoretically and in hands-on exercises. Hardware-, infrastructure-, platform-, software-, security-, - "as-a-service".

Offered in Spring Only

Units: 3

The conception and creation of effective visual interfaces for mobile devices, including ideation and prototyping for useful mobile applications, the industry and architecture of mobile devices, mobile usage context, computer graphics and interfaces for mobiles, and mobile programming.

Offered in Spring Only

Units: 3

General introduction to computer networks. Discussion of protocol principles, local area and wide area networking, OSI stack, TCP/IP and quality of service principles. Detailed discussion of topics in medium access control, error control coding, and flow control mechanisms. Introduction to networking simulation, security, wireless and optical networking.

Offered in Fall Spring Summer

Units: 3

Principles and issues underlying provision of wide area connectivity through interconnection of autonomous networks. Internet architecture and protocols today and likely evolution in future. Case studies of particular protocols to demonstrate how fundamental principles applied in practice. Selected examples of networked clinet/server applications to motivate the functional requirements of internetworking. Project required.

Offered in Fall Spring Summer

Units: 3

This course presents foundational concepts of computer and network security and privacy. It covers a wide breadth of concepts, including; Fundamentals of computer security and privacy, including security models, policies, and mechanisms; Cryptography for secure systems, including symmetric and asymmetric ciphers, hash functions, and integrity mechanisms; Authentication of users and computers; Network attacks and defenses at the network and application layers; Common software vulnerabilities and mitigation strategies; Secure operating systems and seminal access control models and policies; Principles of intrusion detection; Privacy, including considerations of end-user technologies.

Offered in Fall and Spring

Units: 3

Topics related to networking services, signaling for setting up networking services, such as SIP and IMS, networking architectures for providing QoS for networking services, such as MPLS, DiffServ and RAC, signaling protocols for setting up QoS connections in the transport stratum, such as LDP and RSVP-TE, video-based communications, and capacity planning models for dimensioning services.

Offered in Fall and Spring

Units: 3

Workload characterization, collection and analysis of performance data, instrumentation, tuning, analytic models including queuing network models and operational analysis, economic considerations.

Offered in Fall and Spring

Units: 3

Fundamentals and advanced topics in operating system [OS] security. Study OS level mechanisms and policies in investigating and defending against real-world attacks on computer systems, such as self-propagating worms, stealthy rootkits and large-scale botnets. OS security techniques such as authentication, system call monitoring, as well as memory protection. Introduce recent advanced techniques such as system-level randomization and hardware virtualization.

Offered in Spring Only

Units: 3

An advanced introduction to software testing and reliability. The course is a balanced mixture of theory, practice, and application. Methods, techniques, and tools for testing software and producing reliable and secure software are used and analyzed. Software reliability growth models and techniques for improving and predicting software reliability are examined, and their practical use is demonstrated. Good knowledge of C++ or Java. Knowledge of the basics of statistics, calculus, and linear algebra.

Offered in Fall Only

YEAR: Offered Alternate Even Years

Units: 3

Design and implementation of computer systems required to provide specific response times. Structure of a real-time kernel, fixed and dynamic priority scheduling algorithms, rate monotonic scheduling theory, priority inheritance protocols, real-timebenchmarks, case study of a real-time kernel.

Offered in Spring Only

YEAR: Offered Alternate Years

Units: 3

Principles in the design and implementation of modern distributed systems; recent techniques used by real-world distributed systems such as peer-to-peer file sharing, enterprise data center, and internet search engines; state-of-the-art architectures, algorithms, and performance evaluation methodologies in distributed systems.

Offered in Spring Only

YEAR: Offered Alternate Odd Years

Units: 3

Database concepts. Database design. Data models: entity-relationship and relational. Data manipulation languages including SQL. Data Dictionaries. Query processing. Concurrency. Software development environments using a database system. Expert, object-oriented, multimedia and distributed database systems. Database systems architecture. Use of a commercial database management system.

Offered in Spring Only

Units: 3

Concepts, theories, and techniques for computing with services. This course examines architectures for Web applications based on the classical publish, find, and bind triangle, but formulates it at a higher level. It considers sophisticated approaches for the description, discovery, and engagement of services, especially over the Web and the Grid. This course emphasizes service composition. Key topics include semantics, transactions, processes, agents, quality of service, compliance, and trust.

Offered in Fall Only

Units: 3

Advanced research issues in code optimization for scalar and parallel programs; program analysis, scalar and parallel optimizations as well as various related advanced topics.

Offered in Spring Only

Units: 3

A study of network security policies, models, and mechanisms. Topics include: network security models; review of cryptographic techniques; internet key management protocols; electronic payments protocols and systems; intrusion detection and correlation; broadcast authentication; group key management; security in mobile ad-hoc networks; security in sensor networks.

Offered in Spring Only

Units: 3

Introduction to the design and performance evaluation of network services. Topics include top-down network design based on requirements, end-to-end services and network system architecture, service level agreements, quantitative performance evaluation techniques. Provides quantitative skills on network service traffic and workload modeling, as well as, service applications such as triple play, internet [IPTV], Peer-to-peer [P2P], voice over IP [VoIP], storage, network management, and access services.

Offered in Spring Only

Networking Services Track

Units: 3

Fundamental issues related to the design of operating systems. Process scheduling and coordination, deadlock, memory management and elements of distributed systems.

Offered in Fall and Spring

Units: 3

Exploration of technological issues and challenges underlying electronic commerce. Distributed systems; network infrastructures; security, trust, and payment solutions; transaction and database systems; and presentation issues. Project required. No Audits.

Offered in Spring Only

Units: 3

Advanced database concepts. Logical organization of databases: the entity-relationship model; the relational data model and its languages. Functional dependencies and normal forms. Design, implementation, and optimization of query languages; security and integrity, consurrency control, transaction processing, and distributed database systems.

Offered in Fall and Spring

Units: 3

Study of cloud computing principles, architectures, and actual implementations. Students will learn how to critically evaluate cloud solutions, how to construct and secure a private cloud computing environment based on open source solutions, and how to federate it with external clouds. Performance, security, cost, usability, and utility of cloud computing solutions will be studied both theoretically and in hands-on exercises. Hardware-, infrastructure-, platform-, software-, security-, - "as-a-service".

Offered in Spring Only

Units: 3

An introduction to storage systems architecture in an enterprise. Begins with a review of the individual components of a system [eg, hard disk drives, network interfaces], and shows how to aggregate those into storage systems. Tradeoffs involving factors such as cost, complexity, availability, power and performance. Discussion of information management strategies, including data migration. Guest lectures by representatives from local industry. Students work in teams on a semester-long project.

Offered in Spring Only

Units: 3

General introduction to computer networks. Discussion of protocol principles, local area and wide area networking, OSI stack, TCP/IP and quality of service principles. Detailed discussion of topics in medium access control, error control coding, and flow control mechanisms. Introduction to networking simulation, security, wireless and optical networking.

Offered in Fall Spring Summer

Units: 3

Principles and issues underlying provision of wide area connectivity through interconnection of autonomous networks. Internet architecture and protocols today and likely evolution in future. Case studies of particular protocols to demonstrate how fundamental principles applied in practice. Selected examples of networked clinet/server applications to motivate the functional requirements of internetworking. Project required.

Offered in Fall Spring Summer

Units: 3

This course presents foundational concepts of computer and network security and privacy. It covers a wide breadth of concepts, including; Fundamentals of computer security and privacy, including security models, policies, and mechanisms; Cryptography for secure systems, including symmetric and asymmetric ciphers, hash functions, and integrity mechanisms; Authentication of users and computers; Network attacks and defenses at the network and application layers; Common software vulnerabilities and mitigation strategies; Secure operating systems and seminal access control models and policies; Principles of intrusion detection; Privacy, including considerations of end-user technologies.

Offered in Fall and Spring

Units: 3

Introduction to cellular communications, wireless local area networks, ad-hoc and IP infrastructures. Topics include: cellular networks, mobility mannagement, connection admission control algorithms, mobility models, wireless IP networks, ad-hoc routing, sensor networks, quality of service, and wireless security.

Offered in Spring Only

Units: 3

Topics related to networking services, signaling for setting up networking services, such as SIP and IMS, networking architectures for providing QoS for networking services, such as MPLS, DiffServ and RAC, signaling protocols for setting up QoS connections in the transport stratum, such as LDP and RSVP-TE, video-based communications, and capacity planning models for dimensioning services.

Offered in Fall and Spring

Units: 3

Workload characterization, collection and analysis of performance data, instrumentation, tuning, analytic models including queuing network models and operational analysis, economic considerations.

Offered in Fall and Spring

Units: 3

Concepts, theories, and techniques for computing with services. This course examines architectures for Web applications based on the classical publish, find, and bind triangle, but formulates it at a higher level. It considers sophisticated approaches for the description, discovery, and engagement of services, especially over the Web and the Grid. This course emphasizes service composition. Key topics include semantics, transactions, processes, agents, quality of service, compliance, and trust.

Offered in Fall Only

Units: 3

Cutting-edge concepts and technologies to support internetworking in general and to optimize the performance of the TCP/IP protocol suite in particular. Challenges facing and likely evolution for next generation intenetworking technologies. This course investigates topics that include, but may be not limited to: Internet traffic measurement, characteriztion and modeling, traffic engineering, network-aware applications, quality of service, peer-to-peer systems, content-distribution networks, sensor networks, reliable multicast, and congestion control.

Offered in Spring Only

Units: 3

Introduction to the design and performance evaluation of network services. Topics include top-down network design based on requirements, end-to-end services and network system architecture, service level agreements, quantitative performance evaluation techniques. Provides quantitative skills on network service traffic and workload modeling, as well as, service applications such as triple play, internet [IPTV], Peer-to-peer [P2P], voice over IP [VoIP], storage, network management, and access services.

Offered in Spring Only

Units: 3

Analytic modeling and topological design of telecommunications networks, including centralized polling networks, packet switched networks, T1 networks, concentrator location problems, routing strategies, teletraffic engineering and network reliability.

Offered in Spring Only

Internet of Things Track

Special Topics in Engineering Sections include: Internet of Things: Fundamentals; Internet of Things: Applications and Implementation; IOT Analytics; Micromachined Sensors and Actutators

Units: 3

Study of cloud computing principles, architectures, and actual implementations. Students will learn how to critically evaluate cloud solutions, how to construct and secure a private cloud computing environment based on open source solutions, and how to federate it with external clouds. Performance, security, cost, usability, and utility of cloud computing solutions will be studied both theoretically and in hands-on exercises. Hardware-, infrastructure-, platform-, software-, security-, - "as-a-service".

Offered in Spring Only

Units: 3

The study of electro-mechanical systems controlled by microcomputer technology. The theory, design and construction of smart systems; closely coupled and fully integrated products and systems. The synergistic integration of mechanisms, materials, sensors, interfaces, actuators, microcomputers, controllers, and information technology.

Offered in Fall Only

Units: 3

Design and implementation of software for embedded computer systems. The students will learn to design systems using microcontrollers, C and assembly programming, real-time methods, computer architecture, interfacing system development and communication networks. System performance is measured in terms of power consumption, speed and reliability. Efficient methods for project development and testing are emphasized. Credit will not be awarded for both ECE 461 and ECE 561. Restricted to CPE and EE Majors.

Offered in Spring Only

Units: 3

Principles and issues underlying provision of wide area connectivity through interconnection of autonomous networks. Internet architecture and protocols today and likely evolution in future. Case studies of particular protocols to demonstrate how fundamental principles applied in practice. Selected examples of networked clinet/server applications to motivate the functional requirements of internetworking. Project required.

Offered in Fall Spring Summer

Units: 3

Introduction to cellular communications, wireless local area networks, ad-hoc and IP infrastructures. Topics include: cellular networks, mobility mannagement, connection admission control algorithms, mobility models, wireless IP networks, ad-hoc routing, sensor networks, quality of service, and wireless security.

Offered in Spring Only

Units: 3

Topics related to networking services, signaling for setting up networking services, such as SIP and IMS, networking architectures for providing QoS for networking services, such as MPLS, DiffServ and RAC, signaling protocols for setting up QoS connections in the transport stratum, such as LDP and RSVP-TE, video-based communications, and capacity planning models for dimensioning services.

Offered in Fall and Spring

Units: 3

Principles in the design and implementation of modern distributed systems; recent techniques used by real-world distributed systems such as peer-to-peer file sharing, enterprise data center, and internet search engines; state-of-the-art architectures, algorithms, and performance evaluation methodologies in distributed systems.

Offered in Spring Only

YEAR: Offered Alternate Odd Years

Units: 3

Reviews the current state of research in wireless networks, network architectures, and applications of wireless technologies; students will design, organize, and implement or simulate systems in a full-semester research project. For students with background in networking and communications who wish to explore research and development topics.

Offered in Fall Only

Units: 3 - 6

Two-semester sequence to develop new courses and to allow qualified students to explore areas of special interest.

Offered in Fall and Spring

Units: 1 - 6

Advanced topics of current interest in computer science not covered by existing courses.

Offered in Fall and Spring

Units: 1 - 6

Two-semester sequence to develop new courses and to allow qualified students to explore areas of special interest.

Offered in Fall and Spring

Units: 1 - 6

Two-semester sequence to develop new courses and to allow qualified students to explore areas of special interest.

Offered in Fall and Spring

Business courses - up to 3 credits and up to 6 additional credits with approval from your advisor

Units: 3

Major themes and strategies of supply management relationships. The focus is on establishing a basis for collaborative relationships with suppliers through focused market intelligence research, relationship assessment and management, negotiation, collaborative contracting, and on-going management of relationships in global supply chains. Emphasis on the importance of collaboration through the application of practical tools and approaches that drive mutually beneficial outcomes. Core processes around initial exploration and assessment of supply chain relationships, establishing metrics/expectations for the relationship, crafting and managing contracts, and sustaining continuous performance improvement in sourcing, logistics and operations. Every student will participate in a team-based supply chain project with an organization and will learn the team-based, deadline-driven nature of supply chain initiatives in a real-company setting.

Offered in Fall Only

Units: 3

Effective logistics decision-making using a variety of conceptual frameworks and quantitative tools. Relationship between logistics and broader issues of managing the entire supply chain and fulfilling the strategic objectives of a firm. Inventorymanagement. Transportation. Network design.

Offered in Fall and Spring

Units: 3

Design and management of planning and control systems within the organization and across the supply chain. Business planning, master production scheduling, material requirements planning, just-in-time and theory of constraints. Enterprise resourceplanning [ERP] and business-to-business [B2B] systems. Impact of information technologies on planning and control systems. Major project using state-of-the-art ERP system.

Offered in Spring Only

Units: 3

Identification, development, analysis, improvement and management of business processes. Strategic and executional issues critical to high-performance processes. Lean tools. Six sigma. Process redesign. Outsourcing. Service oriented architecture. Examples from different industries and functional areas within firms, to identify similarities and differences of well run processes.

Offered in Spring Only

Units: 3

Life cycle view of organizing and managing technical projects, including project selection, planning, and execution. Methods for managing and controlling project costs, schedules, and scope. Techniques for assessing project risk. Use of popular project management software tools. Application of project management tools and methods to product development, software, and process reengineering projects.

Offered in Spring and Summer

Units: 3

First course in a two-course entrepreneurship sequence focusing on opportunities for technology commercialization. Evaluation of commercialization of technologies in the context of new business startups. Emphasis is placed on creating value through technology portfolio evaluation and fundamentals of technology-based new business startups. This includes development of value propositions and strong technology-product-market linkages. The process based approach is appropriate for new business startup as well as entrepreneurship in existing organizations through spinoffs, licensing, or new product development. Credit not allowed for MBA 576 if the student has already taken MBA 570 or MBA 571.

Offered in Fall and Spring

Units: 3

Continuation of evaluation of technologies for commercialization through new business startups. Emphasis is placed on creating value through strong technology-products-markets linkages using the TEC algorithm. Topics include industry and market testing of assumptions, legal forms of new business startups, funding sources and creating a quality, integrative new business startup plan. Credit not allowed in 577 for students who have already taken 570 or 571.

Offered in Fall and Spring

Units: 1 - 6

Presentation of material not normally available in regular courses offerings or offering of new courses on a trial basis.